Locally optimal heuristic for modularity maximization of networks.

نویسندگان

  • Sonia Cafieri
  • Pierre Hansen
  • Leo Liberti
چکیده

Community detection in networks based on modularity maximization is currently done with hierarchical divisive or agglomerative as well as partitioning heuristics, hybrids, and, in a few papers, exact algorithms. We consider here the case of hierarchical networks in which communities should be detected and propose a divisive heuristic which is locally optimal in the sense that each of the successive bipartitions is done in a provably optimal way. This heuristic is compared with the spectral-based hierarchical divisive heuristic of Newman [Proc. Natl. Acad. Sci. USA 103, 8577 (2006).] and with the hierarchical agglomerative heuristic of Clauset, Newman, and Moore [Phys. Rev. E 70, 066111 (2004).]. Computational results are given for a series of problems of the literature with up to 4941 vertices and 6594 edges. They show that the proposed divisive heuristic gives better results than the divisive heuristic of Newman and than the agglomerative heuristic of Clauset et al.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A locally optimal hierarchical divisive heuristic for bipartite modularity maximization

Given a set of entities, cluster analysis aims at finding subsets, also called clusters or communities or modules, entities of which are homogeneous and well separated. In the last ten years clustering on networks, or graphs, has been a subject of intense study. Edges between pairs of vertices within the same cluster should be relatively dense, while edges between pairs of vertices in different...

متن کامل

s . da ta - a n ] 3 0 A ug 2 00 6 Maximizing Modularity is hard ⋆

Abstract. Several algorithms have been proposed to compute partitions of networks into communities that score high on a graph clustering index called modularity. While publications on these algorithms typically contain experimental evaluations to emphasize the plausibility of results, none of these algorithms has been shown to actually compute optimal partitions. We here settle the unknown comp...

متن کامل

s . da ta - a n ] 2 5 A ug 2 00 6 Maximizing Modularity is hard ⋆

Abstract. Several algorithms have been proposed to compute partitions of networks into communities that score high on a graph clustering index called modularity. While publications on these algorithms typically contain experimental evaluations to emphasize the plausibility of results, none of these algorithms has been shown to actually compute optimal partitions. We here settle the unknown comp...

متن کامل

Computing an upper bound of modularity

Modularity proposed by Newman and Girvan is a quality function for community detection. Numerous heuristics for modularity maximization have been proposed because the problem is NP-hard. However, the accuracy of these heuristics has yet to be properly evaluated because computational experiments typically use large networks whose optimal modularity is unknown. In this study, we propose two power...

متن کامل

An algorithm for parametric communities detection in networks

Modularity maximization is extensively used to detect communities in complex networks. It has been shown however that this method suffers from a resolution limit: small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multi-resolution methods. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011